Extensions 1→N→G→Q→1 with N=C22xHe3 and Q=C3

Direct product G=NxQ with N=C22xHe3 and Q=C3
dρLabelID
C2xC6xHe3108C2xC6xHe3324,152

Semidirect products G=N:Q with N=C22xHe3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C22xHe3):1C3 = He3:A4φ: C3/C1C3 ⊆ Out C22xHe3549(C2^2xHe3):1C3324,54
(C22xHe3):2C3 = He3:2A4φ: C3/C1C3 ⊆ Out C22xHe3369(C2^2xHe3):2C3324,55
(C22xHe3):3C3 = C22xC3wrC3φ: C3/C1C3 ⊆ Out C22xHe336(C2^2xHe3):3C3324,86
(C22xHe3):4C3 = C22xHe3:C3φ: C3/C1C3 ⊆ Out C22xHe3108(C2^2xHe3):4C3324,88
(C22xHe3):5C3 = A4xHe3φ: C3/C1C3 ⊆ Out C22xHe3369(C2^2xHe3):5C3324,130

Non-split extensions G=N.Q with N=C22xHe3 and Q=C3
extensionφ:Q→Out NdρLabelID
(C22xHe3).1C3 = He3.A4φ: C3/C1C3 ⊆ Out C22xHe3549(C2^2xHe3).1C3324,53
(C22xHe3).2C3 = C22xHe3.C3φ: C3/C1C3 ⊆ Out C22xHe3108(C2^2xHe3).2C3324,87
(C22xHe3).3C3 = He3.2A4φ: C3/C1C3 ⊆ Out C22xHe3549(C2^2xHe3).3C3324,129
(C22xHe3).4C3 = C22xC9oHe3φ: trivial image108(C2^2xHe3).4C3324,154

׿
x
:
Z
F
o
wr
Q
<